

Section XI.4: Dark Matter and Cosmology: Gamma Rays—II

The GLAST Gamma-Ray Telescope Mission

Robert P. Johnson
Santa Cruz Institute for Particle Physics
Physics Department
University of California at Santa Cruz

GLAST LAT Tracker Subsystem Manager Representing the LAT Collaboration rjohnson@scipp.ucsc.edu

See: http://www.glast.gsfc.nasa.gov and links therein

Gamma-ray Large Area Space Telescope

GLAST Gamma-Ray Observatory:

- LAT ~20 MeV and up
- GBM 20 keV to 20 MeV
- **Spacecraft bus**

Why study HE gamma rays?

- Produced only by nonthermal processes around special and interesting astrophysical objects.
- Unlike cosmic rays, they travel in straight lines from their sources.
- Probe cosmological volumes and the center of the Milky Way.
- Individual photons are readily detected.

All Sky View in Galactic Coordinates

All Sky in Gamma Rays

Relatively few point sources.

Many of them highly variable.

Scientific Heritage: CGRO-EGRET

Robert P. Johnson **PANIC 2005** 5

GIRS

3rd EGRET Source Catalog

□ 271 sources

LAT Source Catalogs

 5σ sources from a simulated 1-year all-sky survey.

LAT Catalog: ~10,000 sources expected.

GRB, AGN, 3EG + Gal. plane & halo sources

GLAST LAT High Energy Capabilities

The LAT will provide a huge leap in science capability:

- □ >30 times improvement in source sensitivity over EGRET:
 - Large effective area: > 5 times larger than EGRET
 - Field of View (~20% of sky) 4 times greater
 - Unprecedented angular resolution for this wavelength band
 - 3 times better than EGRET for E > 1 GeV
- ☐ Broadband: 4 decades in energy
 - Including the unexplored region E > 10 GeV
- ☐ Small deadtime of 25 μs; 4,000 times shorter than EGRET
- ☐ No expendables: long mission without degradation

CUE

Point-Source Flux Sensitivity

- GLAST 1-year survey
 - 5σ threshold
 - Isolated source
- As much as 100 times improvement on EGRET
- Very well matched to the new groundbased detectors, in units of "Crabs".

GLAST Science Opportunities

- Active Galactic Nuclei
- Extra-galactic Background Light (EBL)
- Isotropic Diffuse Background Radiation
- **Endpoints of Stellar Evolution**
 - Neutron Stars/Pulsars
 - **Black Holes**
- Cosmic Ray Production:
 - Identify sites and mechanisms
- Gamma-Ray Bursts
- Solar Physics
- **DISCOVERY!**
 - Identifying known sources
 - New classes of γ -ray sources?
 - Dark Matter (WIMPs)?
 - New cosmological relics?
 - Dispersion in vacuum?

Relevant to this parallel session

AGN Cosmology Laboratories

- Intense gamma-ray beams observable across the universe at all z.
- Probe Optical-UV EBL by looking at cutoff vs z
 - ➤ High statistics (but need z from optical telescopes!).
- Searches for violations of Lorentz invariance.

Dark Matter Searches

WIMP annihilation

- Less direct searches, such as for anomalous galactic flux, could have greater sensitivity to dark matter.
 - Some tantalizing (but inconclusive) indicators from the galactic center region (EGRET, WMAP, HESS)
 - GLAST will have far greater sensitivity than EGRET.

- Direct searches for γγ states (lines) would give the cleanest discovery signal.
- Sensitivity to part of the space of SUSY parameters/galactic models.

GLAST LAT Collaboration

United States

- California State University at Sonoma
- □ University of California at Santa Cruz Santa Cruz Institute of Particle Physics
- □ Goddard Space Flight Center Laboratory for High Energy Astrophysics
- Naval Research Laboratory
- Ohio State University
- Stanford University (SLAC and HEPL/Physics)
- University of Washington
- Washington University, St. Louis

France

■ IN2P3, CEA/Saclay

<u>Italy</u>

□ INFN, ASI

<u>Japan</u>

- Hiroshima University
- □ ISAS, RIKEN

<u>Sweden</u>

- □ Royal Institute of Technology (KTH)
- □ Stockholm University

PI: Peter Michelson (Stanford & SLAC)

- LAT instrument fabrication and science support managed at SLAC.
- GLAST mission managed by NASA GSFC.

GBM Collaboration

National Space Science & Technology Center

University of Alabama in Huntsville

NASA Marshall Space Flight Center

Max-Planck-Institut für extraterrestrische Physik

Michael Briggs William Paciesas **Robert Preece**

Charles Meegan (PI) **Gerald Fishman** Chryssa Kouveliotou

Giselher Lichti (Co-PI) **Andreas von Keinlin** Volker Schönfelder **Roland Diehl**

+ Marc Kippen, LANL

On-board processing, flight software, systems engineering, analysis software, and management Detectors, power supplies, calibration, and analysis software

Pair-Conversion Telescope Principle

- Veto counters: a signal indicates presence of a charged cosmic ray, instead of a photon.
- Tracker/Converter:
 heavy metal converts
 the photon to a
 positron-electron pair.
 The measured tracks
 point back to the
 astronomical source.
- Calorimeter: measures the photon energy

GLAST LAT Overview

Si Tracker

16 tungsten layers
36 SSD layers
Strip pitch = 228 μm
Self triggering
8.8×10⁵ channels
<160 Watts

ACD

Segmented scintillator tiles 0.9997 efficiency Minimal self veto

Grid (& Thermal Radiators)

Csl Calorimeter

Hodoscopic array

 $8.4 X_0 8 \times 12 \text{ bars}$

 $2.0 \times 2.7 \times 33.6$ cm

- ⇒ cosmic-ray rejection
- ⇒ shower leakage correction

3000 kg, 650 W (allocation)

 $1.8 \text{ m} \times 1.8 \text{ m} \times 1.0 \text{ m}$

20 MeV - 300 GeV

Mega-channel particle-physics detector in orbit:

- \Rightarrow Low power (<650 W)!
- ⇒ Extensive data reduction on orbit!
- ⇒ No maintenance!

Robert P. Johnson PANIC 2005 16

Data ===

acquisition

Anti-Coincidence Detector (NASA GSFC)

Photomultiplier
Tubes &
Electronics

Presently located at SLAC.

Integration into the instrument is immanent.

Anti-Coincidence Detector

Threshold setting of 0.3 MIP achieves the required efficiency (>0.9997) with low noise.

Silicon-Strip Tracker/Converter

- Carbon-composite structure supports 18 x and 18 y layers of silicon-strip detectors and 16 layers of tungsten converter foils.
- □ 36 custom readout electronics boards, each with 1536 amplifier channels, mount on the sides of the panels to minimize inter-tower dead space.

PANIC 2005 19

Tracker Production Overview

Tracker Mechanical Fabrication Challenges

SSD X-section of tray edge Right-Angle Interconnect Tray Amplifier ASIC Composite Sidewall MCN Composite Panel Thermal Boss Connector SSD Sidewall 7.95 mm

Right-angle interconnect

Very tight space for electronics

High precision carboncomposite structure to maintain 2.5 mm gaps between modules

Tracker Performance

- Hit efficiency (in active area) >99.5%
- Overall Tracker active area fraction: 89.4%
- Noise occupancy <5×10⁻⁷
- Power consumption 158 W (178 μW/ch)
- Time-over-threshold 43% FWHM

Calorimeter Production Overview

C-Composite Structure (France)

Data Acquisition Electronics (SLAC)

LAT Structural/Thermal Design

LAT Software Activities

- Ground support
 - Subsystem fabrication (done)
 - LAT integration and test
 - Spacecraft simulation
- Flight software
 - Support instrument operation on ground and in orbit
 - 2nd & 3rd level triggers (filters)
- Offline software
 - Event simulation
 - Event reconstruction
 - PSF optimization
 - Energy optimization
 - Background rejection
 - Instrument science operations
 - Science tools

"Data Challenge" simulation of the full sky (here 1 day; working on 1 month)

Cosmic-Ray Gamma Conversions in 8 Towers

Conclusions

- □ All LAT detector systems are (finally!) completely fabricated, with all 16 towers installed.
- □ The LAT will be assembled and functionally tested by January.
- Environmental testing will be completed at NRL by summer, and then the instruments will go to Arizona to be integrated with the spacecraft.
- □ Launch in August 2007.
- □ 5 to 10 years of operations.
 - All of you will have access to the data after the 1st year!
- With GLAST and the new generation of ground based telescopes working together, we can look forward to a new and exciting era of discovery and advances in highenergy astrophysics!